Abstract

It is tenable to argue that nobody can predict the future with certainty, yet one can learn from the past and make informed projections for the years ahead. In this Perspective, we overview the status of how theory and computation can be exploited to obtain chemical understanding from wave function theory and density functional theory, and then outlook the likely impact of machine learning (ML) and quantum computers (QC) to appreciate traditional chemical concepts in decades to come. It is maintained that the development and maturation of ML and QC methods in theoretical and computational chemistry represent two paradigm shifts about how the Schrödinger equation can be solved. New chemical understanding can be harnessed in these two new paradigms by making respective use of ML features and QC qubits. Before that happens, however, we still have hurdles to face and obstacles to overcome in both ML and QC arenas. Possible pathways to tackle these challenges are proposed. We anticipate that hierarchical modeling, in contrast to multiscale modeling, will emerge and thrive, becoming the workhorse of in silico simulations in the next few decades.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call