Abstract

We propose a spatial aggregation method to solve an optimal harvest scheduling problem for strip shelterwood management. Strip shelterwood management involves either a two-cut system with a preparatory-removal cut cycle, or a three-cut system with a preparatory-establishment-removal cut cycle. In this study we consider these connected sequential cuts as one decision variable, then employ conventional adjacency constraints to seek the best combination of sequential cuts over space and time. Conventional adjacency constraints exclude any spatially-overlapped strips in the decision variables. Our results show the proposed approach can be used to analyze a strip shelterwood cutting system that requires "connectivity" of management units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call