Abstract
The present study was conducted to explore the process of watersoaking seen previously in beit alpha-type cucumber fruit treated with ethylene. Fruit were harvested at four levels of maturity: Immature (4 to 8 days after anthesis, DAA), Mature (10 to 14 DAA), Breaker (16 to 20 DAA), and Yellow (35 to 40 DAA). Fruit were then stored at 13 °C in the presence of air (control) or either 10 μL·L-1 ethylene or 1300 μL·L-1 propylene for up to 12 days. The physiological response to ethylene treatment varied with fruit maturity. Immature-stage fruit treated with ethylene for 9 days had mesocarp watersoaking, epidermal sloughing, and lower hue (118°, control 124°), endocarp pH (4.4, control 5.4), and whole fruit firmness (23 N, control 46 N). Mature-stage fruit behaved similarly to Immature-stage fruit, but lacked mesocarp watersoaking. In contrast, after 9 days of ethylene exposure, the Breaker- and Yellow-stage fruit exhibited no watersoaking, accumulated beta-carotene in peel tissue (13.6 μg·g-1 F.W, control 0.35 μg·g-1 F.W.) and had a “melon”-like aroma. Ethylene exposure for all maturities increased respiration rate and decay incidence compared to air-treated fruit. Ethylene evolution was only detectable in fruit with visible decay. Decay incidence in response to ethylene treatment was inversely proportional to maturity at harvest. Watersoaking, exhibited exclusively in Immature fruit, spread inward from the epidermis starting after about 6 days of ethylene treatment. Cells in watersoaked tissue stained negatively for viability with fluorescein diacetate and cells proximal to watersoaked cells stained weakly compared to air-treated controls. Current work is focused on identifying the mechanism of cell death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.