Abstract
Fairness (also known as equity interchangeably) in machine learning is important for societal well-being, but limited public datasets hinder its progress. Currently, no dedicated public medical datasets with imaging data for fairness learning are available, though underrepresented groups suffer from more health issues. To address this gap, we introduce Harvard Glaucoma Fairness (Harvard-GF), a retinal nerve disease dataset including 3,300 subjects with both 2D and 3D imaging data and balanced racial groups for glaucoma detection. Glaucoma is the leading cause of irreversible blindness globally with Blacks having doubled glaucoma prevalence than other races. We also propose a fair identity normalization (FIN) approach to equalize the feature importance between different identity groups. Our FIN approach is compared with various state-of-the-art fairness learning methods with superior performance in the racial, gender, and ethnicity fairness tasks with 2D and 3D imaging data, demonstrating the utilities of our dataset Harvard-GF for fairness learning. To facilitate fairness comparisons between different models, we propose an equity-scaled performance measure, which can be flexibly used to compare all kinds of performance metrics in the context of fairness. The dataset and code are publicly accessible via https://ophai.hms.harvard.edu/datasets/harvard-gf3300/.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.