Abstract
Wound healing remains a major issue in surgery. None of the existing treatment modalities in caring for wounds can yet claim to be the holy grail of wound management. Channa striatus, locally known in Malaysia as Haruan, is a freshwater air-breathing carnivorous fish that is proven to influence the different phases of wound healing. As a medicinal fish, not only does Haruan have a high content of amino and fatty acids, which are essential in collagen fibre synthesis during wound recovery, it also abounds in arachidonic acid and polyunsaturated fatty acids that promote prostaglandin synthesis, a vital component of the healing process. Moreover, its antinociceptive effects could potentially reduce wound pain, an important factor in wound healing. Proteomic studies show that a quarter of the total protein detected in freeze- and spray-dried C. striatus extract are actin, myosin and tropomyosin – all molecules that play a role in the wound healing process. Proteomic profiling also reveals that Haruan possesses two types of collagen namely collagen type-I and type-II that confer tensile strength during the healing process. It is proven that collagen along with other components of the extracellular matrix form the granulation tissue which, when contracted, closes the wound and concomitantly aligns the collagen fibres in the extracellular matrix. Hence, it is inferred that Haruan promotes the maturation of granulation tissue, thereby expediting the wound healing process itself. Consequently, it could mediate a faster recovery from surgical wound coupled with a lower incidence of wound infection due to an improved and accelerated wound healing process. Additionally, Haruan has demonstrated its ability in promoting angiogenesis and cell proliferation in wound bed preparation for skin grafting. Furthermore, a Haruan aerosol concentrate can act as a wound dressing at the donor site thereby enhancing the healing process while simultaneously exhibiting some antinociceptive properties. Haruan’s exceptional ability in promoting wound healing together with its potential use in skin grafting would be instrumental in the field of surgery. In essence, the cumulated benefits from all the processes involved would translate into a significant reduction of hospitalisation cost; that would immensely benefit not only the patient, but also the government.
Highlights
IntroductionA wound is a mechanical injury to the body leading to disruption of the normal anatomical structure and function
Unlike acute wounds that heal by primary intention where the edges of the wound are apposed and held together with minimal scarring, chronic wounds heal by secondary intention [4, 5]; they form granulation tissue which fills the wound defects
The high quantity of uncharacterised proteins detected via proteomics, that is, the proteome database for C. striatus, is far from complete. At this point in time, we can safely say that while existing data have given us an insight into the proteins of Haruan, more rigorous effort must be made into the research of the uncharacterised proteins that might be involved in accelerating the wound healing process – the indisputable characteristic of C. striatus or Haruan
Summary
A wound is a mechanical injury to the body leading to disruption of the normal anatomical structure and function. It can be classified into acute and chronic wounds. Acute wounds normally proceed through the reparative process in an orderly and timely manner to restore anatomical and functional integrity. Wounds that demonstrate signs of delayed and interrupted healing and fail to go through the normal healing process are termed chronic wounds [1–3]. Wound healing reflects a cascade of complex, highly regulated biological events to restore the body’s anatomical function back to its pre-injured state. Unlike acute wounds that heal by primary intention where the edges of the wound are apposed and held together with minimal scarring, chronic wounds heal by secondary intention [4, 5]; they form granulation tissue which fills the wound defects
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.