Abstract

Numerical Hartree-Fock (HF) energies accurate to at least 1 microhartree are reported for 27 diatomic transition-metal-containing species. The convergence of HF energies toward this numerical limit upon increasing the basis set size has been investigated, where standard nonrelativistic all-electron correlation consistent basis sets and augmented basis sets, developed by Balabanov and Peterson [J. Chem. Phys. 123, 064107 (2005)], were employed. Several schemes which enable the complete basis set (CBS) limit to be determined have been investigated, and the resulting energies have been compared to the numerical Hartree-Fock energies. When comparing basis set extrapolation schemes, those in the form of exponential functions perform well for our test set, with mean absolute deviations from numerical HF energies of 234 and 153 microE(h), when the CBS limit has been determined using a two-point fit as proposed by Halkier et al. [Chem. Phys. Lett. 302, 437 (1999)] on calculations of triple- and quadruple-zeta basis set qualities and calculations of quadruple- and quintuple-zeta basis set qualities, respectively. Overall, extrapolation schemes in the form of a power series are not recommended for the extrapolation of transition metal HF energies. The impact of basis set superposition error has also been examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.