Abstract
Harsanyi's Social Aggregation Theorem is concerned with the aggregation of individual preferences defined on the set of lotteries generated from a finite set of basic prospects into a social preference. These preferences are assumed to satisfy the expected utility hypothesis and are represented by von Neumann-Morgenstern utility functions. Harsanyi's Theorem says that if Pareto Indifference is satisfied, then the social utility function must be an affine combination of the individual utility functions. This article considers the implications for Harsanyi's Theorem of replacing Pareto Indifference with Weak Pareto.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.