Abstract

This paper presents design, development and evaluation of an eXtra-large Scale, Homogeneous and a Heterogeneous Accelerator-Rich Platform (HARP2) for massively parallel signal processing algorithms. HARP is an integrated platform of multiple Coarse-Grained Reconfigurable Arrays (CGRAs) over a Network-on-Chip (NoC) where each CGRA is scaled and tailored for a specific application. The architecture of the NoC consists of nine nodes in a topology of 3-rows ? 3-columns and acts as backbone of communication between different CGRAs. In this experimental work, the HARP template is used to instantiate a homogeneous (HARP-hom) and a heterogeneous (HARP-het) platform. The HARP-het is generated for a proof-of-concept test to verify the design and functionality of HARP. It also provides insight to many features of the design and evaluation in terms of different performance metrics. The other version (HARP-hom) is instantiated for a relatively realistic design problem, i.e., satisfying the execution-time constraints imposed on Fast Fourier Transform processing in IEEE-802.11n demodulators. Both of the versions of HARP are treated for comparative analysis using different performance metrics against some of the existing state-of-the-art platforms. The HARP versions are designed to illustrate large-scale homogeneous/heterogeneous multicore architectures while presenting the advantages of maximizing the number of reconfigurable processing resources on a single chip.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.