Abstract

Industrialization of green hydrogen production through electrolyzers is hindered by cost‐effective electrocatalysts and sluggish oxygen evolution reaction (OER). Herein, a facile one‐step hydrothermal technique for the in situ growth of non‐noble tin chalcogenides and their heterostructures on nickel foam (NF) as trifunctional electrocatalysts for hydrogen evolution reaction (HER), OER, and methanol oxidation reaction (MOR) is detailed. Among them, the heterostructured SnSe/SnTe/NF outperforms all others and recently reported catalysts, boasting an impressively low potential of −0.077, 1.51, and 1.33 V versus reversible hydrogen electrode to achieve 10 mA cm−2 for HER, OER, and MOR. Owing to the rod‐like morphology with hetero‐phases for enhancing the performance. Furthermore, a hybrid MOR‐mediated water electrolyzer requiring only 1.49 V to achieve 10 mA cm−2 with value‐added formate is introduced and traditional water electrolyzer is outperformed. Additionally, a zero‐gap commercial anion‐exchange membrane water electrolyzer (AEMWE) with bifunctional SnSe/SnTe/NF electrodes is tested, successfully achieving an industrially required 1 A cm−2 at a low potential of 1.93 V at 70 °C. Moreover, AEMWE using a windmill is powered and H2 and O2 production with wind speed is measured. Overall, this work paves the development of unexplored tin chalcogenide heterostructure as a potent candidate for cost‐effective, energy‐efficient, and carbon‐neutral hydrogen production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.