Abstract

In light of recent extreme weather events, it is imperative to explore innovative methodologies for promptly and accurately measuring various meteorological parameters. The high spatial and temporal variability in precipitation often surpasses the resolution capabilities of traditional rain gauge measurements and satellite estimation algorithms. Therefore, exploring alternative methods to capture this variability is crucial. Research on the correlation between signal attenuation and precipitation could offer valuable insights into these alternative approaches. This study investigates (a) the feasibility of the classification of precipitation rate using signal power measurements in cellular terminals and (b) the impact of atmospheric humidity as well as other meteorological parameters on the signal. Specifically, signal power data were collected remotely through a specialized Android application designed for this research. During the time of analysis, the power data were processed alongside meteorological parameters obtained from the meteorological station of the Physics Department at the University of Ioannina gathered over one semester. Having in mind the radio refractivity of the air as a fascinating concept affecting the way radio waves travel through the atmosphere, the processed results revealed a correlation with signal attenuation, while a correlation between the latter and absolute humidity was also observed. Moreover, a precipitation rate classification was attained with an overall accuracy exceeding 88%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call