Abstract

Nanostructure-forming polymers have tremendous potential to enhance the performance and safety of lithium-ion batteries (LiBs) as a result of their ability to simultaneously optimize often contradictory properties, such as ionic conductivity and mechanical stability, in a single material. These macromolecules can be harnessed in both LiB electrolyte and electrode components. With respect to electrolytes, advances in salt-doped and single-ion systems are highlighted herein with a focus on strategies that improve conductivities to rival that found in gel and liquid electrolytes, while also permitting further enhancements in electrochemical and mechanical stability. In the arena of electrodes, three major functions are considered: binders to maximize active material efficiency, polymer electrodes to enable fully organic LiBs, and sacrificial constructs that template high surface area, well-ordered metal oxide or metallic electrodes to improve electrode capacity. Additionally, the application of theory and si...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.