Abstract

Genus Ocimum of Labiatae is well known in all traditional medicinal systems like Ayurveda, Unani, Siddha, and Homeopathy. The pharmaceutical activities of different species of Ocimum attributed to all plant parts. Roots are the most significant vital organ of the plant, as they absorb water and nutrients from soil and transport to aerial parts of the plants. Roots of Ocimum were found helpful with free-radical scavenging activity to improve physical and mental strength as well as to treat diabetes, malaria, and liver problems. Antibacterial activity of Ocimum roots and its main component, rosmarinic acid, is very beneficial to protect against several human pathogens, including bacteria and viruses. Being so important in every way, roots of Ocimum need healthy rhizosphere. Bacteria, fungi, nematodes, types of soil, fungicide, pesticides, salt, radioactive elements, as well as heavy metal contaminations, affect roots and overall growth of Ocimum in positive or negative ways. Each component of rhizosphere (natural, treatment or contamination) affects the roots, which highlights current ecological scenario to discover biosafe and more productive approaches. For such prestigious organ of Ocimum, development of in vitro root cultures and hairy root cultures assists to reduce the efforts and timing of the traditional cultivation process along with elimination of negative factors in rhizosphere. Different strains of Agrobacterium rhizogenes, various media compositions, as well as discrete treatments, like elicitors, on nonidentical species or cultivars of Ocimum boost the root induction, biomass, and accumulation of phytoceuticals differently. Hairy roots and in vitro roots of Ocimum accumulate higher quantity of therapeutic metabolites. These metabolites include several phenolics (like rosmarinic acid, 3-hydroxybenzoic acid, m-coumaric acid, p-coumaric acid, caffeic acid, ferulic acid, vanillic acid, chicoric acid, and lithospermic acid), triterpenes (such as betulinic acid, 3-epimaslinic acid, alphitolic acid, euscaphic acids, oleanolic acid, and ursolic acid) as well as flavonoids (flavones, flavonols, and dihydroflavonols). This review highlights pharmaceutical applications of Ocimum roots, a great deal of rhizosphere components and in vitro culturing techniques to enhance biomass as well as chief phytoceuticals.

Highlights

  • Genus Ocimum (Family Labiatae) is among the most important plants with therapeutic potential due to its worldwide cultivation, including, Australia, Malaysia, Africa, India, China, Taiwan, and several Arab countries (Mondal et al, 2009; Baliga et al, 2013; Kulkarni and Adavirao, 2018)

  • Root tips overcame fungal growth having droplets with rosmarinic acid (RA) at the region of fungal contacts. These findings suggest that metabolites like RA might get released in rhizosphere to combat microbial infection

  • Higher concentration of elements in leaves suggested more translocation from roots, which was proved with observed maximum transfer factor (TF) of O. sanctum for 210Po (3.7) and 210Pb (7.0) as compared with other 11 medicinal plants

Read more

Summary

Introduction

Genus Ocimum (Family Labiatae) is among the most important plants with therapeutic potential due to its worldwide cultivation, including, Australia, Malaysia, Africa (east, north, and west), India, China, Taiwan, and several Arab countries (Mondal et al, 2009; Baliga et al, 2013; Kulkarni and Adavirao, 2018). Adamczyk-Szabela et al (2017) examined growth and physiological activities of O. basilicum (1 month old) germinated on two different soil types with and without thiuram (fungicide) treatment for 14, 28, and 42 days (Table 2).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call