Abstract
This study investigates the influence of pyrrole concentration and the addition of MIL53(Al)/Fe2O3 nanocomposite on the hydrogen evolution reaction (HER) activity of polypyrrole (PPy) electrocatalysts. Electrodeposition of PPy on a nickel (Ni) substrate was conducted using various pyrrole concentrations ranging from 0.01 M to 0.2 M, followed by evaluation through linear sweep voltammetry (LSV) experiments. Results indicated that PPy synthesized with 0.1 M pyrrole exhibited the highest HER activity, characterized by lower onset potential and higher current density. Additionally, the incorporation of MIL53(Al)/Fe2O3 nanocomposite into PPy coating enhanced electrode performance, evidenced by high charge transfer kinetics. Nyquist diagrams and electrochemical impedance spectroscopy (EIS) analysis confirmed accelerated electron transfer kinetics and lower charge transfer resistance for PPy@MIL53(Al)/Fe2O3 compared to Ni substrate. Despite a lower electrochemical double layer capacitance (Cdl), PPy@MIL53(Al)/Fe2O3 demonstrated enhanced catalytic activity, underscoring the importance of electrode morphology and active site characteristics. Furthermore, stability tests revealed consistent performance of PPy@MIL53(Al)/Fe2O3 over prolonged electrolysis periods, highlighting its potential for practical applications in hydrogen generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.