Abstract

Phosphor-converted LEDs (pc-LEDs) emitting in the visible region based on undoped tellurate double perovskites have not been explored till now. A cyan-emitting pc-LED is fabricated using the host Ba2MgTeO6 double perovskite for the first time. The as-fabricated cyan LED emits light in the visible region with the maximum emission at 484 nm. The obtained CIE coordinates of (0.26, 0.37) ensure a cyan light, and LED exhibits superior color stability even at higher input drive current. An attempt to develop a white emitting phosphor was done by substituting Eu3+ ions into the Ba2MgTeO6 matrix. Followed by this, a phosphor converted LED emitting in the bluish white region was fabricated by combining near UV chip and BMTO: 0.02 Eu3+ phosphor. Further, an inherent near-infrared (NIR) luminescence in Ba2MgTeO6 is also discovered and it originates from the 3T1u, 3A1u – 1A1g electronic transitions within the Te4+ ions. Upon 367 nm excitation, Ba2MgTeO6 exhibits strong broadband NIR emission, which spans from 780 nm to 1150 nm with a maximum emission at 889 nm and full width at half maximum (FWHM) of about 115 nm. Finally, an efficient pc-LED emitting in the NIR region is fabricated using the intrinsic near-infrared luminescence observed in the Ba2MgTeO6 phosphor. The pc-LED covering the near infrared region can be potentially used for various applications, including plant cultivation, biosensors, night vision cameras, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.