Abstract

Despite the great promise of immune checkpoint blockade (ICB) therapy for cancer treatment, the currently available options for ICB treatment pose major clinical challenges, including the risk of severe systemic autoimmune responses. Here, we developed a novel localized delivery platform, immuno-bioglue (imuGlue), which is inspired by the intrinsic underwater adhesion properties of marine mussels and can allow the optimal retention of anti-PD-L1 drugs at tumor sites and the on-demand release of drugs in response to the tumor microenvironment. Using a triple-negative breast cancer and melanoma models, we found that imuGlue could significantly enhance anti-tumor efficacy by eliciting a robust T cell-mediated immune response while reducing systemic toxicity by preventing the rapid diffusion of anti-PD-L1 drugs into the systemic circulation and other tissues. It was also demonstrated that imuGlue could be successfully utilized for combination therapy with other immunomodulatory drugs to enhance the anti-tumor efficacy of ICB-based immunotherapy, demonstrating its versatility as a new treatment option for cancer immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.