Abstract

Non-Hermitian systems characterized by suitable spatial distributions of gain and loss can exhibit "spectral singularities" in the form of zero-width resonances associated to real-frequency poles in the scattering operator. Here, we study this intriguing phenomenon in connection with cylindrical geometries, and explore possible applications to controlling and tailoring in unconventional ways the scattering response of sub-wavelength and wavelength-sized objects. Among the possible implications and applications, we illustrate the additional degrees of freedom available in the scattering-absorption-extinction tradeoff, and address the engineering of zero-forward-scattering, transverse scattering, and gain-controlled reconfigurability of the scattering pattern, also paying attention to stability issues. Our results may open up new vistas in active and reconfigurable nanophotonics platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.