Abstract

Many per- and polyfluoroalkyl substances (PFASs) pose significant health hazards due to their bioactive and persistent bioaccumulative properties. However, assessing the bioactivities of PFASs is both time-consuming and costly due to the sheer number and expense of in vivo and in vitro biological experiments. To this end, we harnessed new unsupervised/semi-supervised machine learning models to automatically predict bioactivities of PFASs in various human biological targets, including enzymes, genes, proteins, and cell lines. Our semi-supervised metric learning models were used to predict the bioactivity of PFASs found in the recent Organisation of Economic Co-operation and Development (OECD) report list, which contains 4730 PFASs used in a broad range of industries and consumers. Our work provides the first semi-supervised machine learning study of structure-activity relationships for predicting possible bioactivities in a variety of PFAS species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.