Abstract

Many per- and polyfluoroalkyl substances (PFASs) pose significant health hazards due to their bioactive and persistent bioaccumulative properties. However, assessing the bioactivities of PFASs is both time-consuming and costly due to the sheer number and expense of in vivo and in vitro biological experiments. To this end, we harnessed new unsupervised/semi-supervised machine learning models to automatically predict bioactivities of PFASs in various human biological targets, including enzymes, genes, proteins, and cell lines. Our semi-supervised metric learning models were used to predict the bioactivity of PFASs found in the recent Organisation of Economic Co-operation and Development (OECD) report list, which contains 4730 PFASs used in a broad range of industries and consumers. Our work provides the first semi-supervised machine learning study of structure-activity relationships for predicting possible bioactivities in a variety of PFAS species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call