Abstract

Ankle fractures are prevalent injuries that necessitate precise diagnostic tools. Traditional diagnostic methods have limitations that can be addressed using machine learning techniques, with the potential to improve accuracy and expedite diagnoses. We trained various deep learning architectures, notably the Adapted ResNet50 with SENet capabilities, to identify ankle fractures using a curated dataset of radiographic images. Model performance was evaluated using common metrics like accuracy, precision, and recall. Additionally, Grad-CAM visualizations were employed to interpret model decisions. The Adapted ResNet50 with SENet capabilities consistently outperformed other models, achieving an accuracy of 93%, AUC of 95%, and recall of 92%. Grad-CAM visualizations provided insights into areas of the radiographs that the model deemed significant in its decisions. The Adapted ResNet50 model enhanced with SENet capabilities demonstrated superior performance in detecting ankle fractures, offering a promising tool to complement traditional diagnostic methods. However, continuous refinement and expert validation are essential to ensure optimal application in clinical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.