Abstract

Bacterial panicle blight of rice is a seedborne disease caused by the bacterium Burkholderia glumae. This disease has affected rice production worldwide and its effects are likely to become more devastating with the continuous increase in global temperatures, especially during the growing season. The bacterium can cause disease symptoms in different tissues and at different developmental stages. In reproductive stages, the bacterium interferes with grain development in the panicles and, as a result, directly affects rice yield. Currently, there are no methods to control the disease because chemical control is not effective and completely resistant cultivars are not available. Thus, a promising approach is the use of antagonistic microorganisms. In this work, we identified one strain of Pseudomonas protegens and one strain of B. cepacia with antimicrobial activity against B. glumae in vitro and in planta. We further characterized the antimicrobial activity of P. protegens and found that this activity is associated with bacterial secretions. Cell-free secretions from P. protegens inhibited the growth of B. glumae in vitro and also prevented B. glumae from causing disease in rice. Although the specific molecules associated with these activities have not been identified, these findings suggest that the secreted fractions from P. protegens could be harnessed as biopesticides to control bacterial panicle blight of rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call