Abstract

Solar-driven interfacial water evaporation (SIWE) offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination. It also engenders overlapped temperature-salinity gradient (TSG) between water-air interface and adjacent seawater, affording opportunities of harnessing electricity. However, the efficiency of conventional SIWE technologies is limited by significant challenges, including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously. Herein, we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG. It enables spontaneous circulation of salt flux upon seawater evaporation, inducing a self-cleaning evaporative interface without salt passivation for stable steam generation. Meanwhile, this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation. These benefits render a remarkable efficiency of 90.8% in solar energy utilization, manifesting in co-generation of solar steam at a fast rate of 2.01 kg m−2 h−1 and electricity power of 1.91 W m−2 with high voltage. Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply. It produces hydrogen at a rapid rate of 1.29 L h−1 m−2 and freshwater with 22 times lower Na+ concentration than the World Health Organization (WHO) threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.