Abstract
Real-time tracking of vigilance states related to both sleep or anaesthesia has been a goal for over a century. However, sleep scoring cannot currently be performed with brain signals alone, despite the deep neuromodulatory transformations that accompany sleep state changes. Therefore, at heart, the operational distinction between sleep and wake is that of immobility and movement, despite numerous situations in which this one-to-one mapping fails. Here we demonstrate, using local field potential (LFP) recordings in freely moving mice, that gamma (50–70 Hz) power in the olfactory bulb (OB) allows for clear classification of sleep and wake, thus providing a brain-based criterion to distinguish these two vigilance states without relying on motor activity. Coupled with hippocampal theta activity, it allows the elaboration of a sleep scoring algorithm that relies on brain activity alone. This method reaches over 90% homology with classical methods based on muscular activity (electromyography [EMG]) and video tracking. Moreover, contrary to EMG, OB gamma power allows correct discrimination between sleep and immobility in ambiguous situations such as fear-related freezing. We use the instantaneous power of hippocampal theta oscillation and OB gamma oscillation to construct a 2D phase space that is highly robust throughout time, across individual mice and mouse strains, and under classical drug treatment. Dynamic analysis of trajectories within this space yields a novel characterisation of sleep/wake transitions: whereas waking up is a fast and direct transition that can be modelled by a ballistic trajectory, falling asleep is best described as a stochastic and gradual state change. Finally, we demonstrate that OB oscillations also allow us to track other vigilance states. Non-REM (NREM) and rapid eye movement (REM) sleep can be distinguished with high accuracy based on beta (10–15 Hz) power. More importantly, we show that depth of anaesthesia can be tracked in real time using OB gamma power. Indeed, the gamma power predicts and anticipates the motor response to stimulation both in the steady state under constant anaesthetic and dynamically during the recovery period. Altogether, this methodology opens the avenue for multi-timescale characterisation of brain states and provides an unprecedented window onto levels of vigilance.
Highlights
Defining the different states of brain activity and describing how they impact the computations performed by neural networks is an ongoing challenge in neuroscience
We demonstrate that 50–70 Hz electrical oscillations in the olfactory bulb (OB) of mice are a reliable indicator for global brain states
We construct a fully automatic sleep scoring algorithm that relies on brain activity alone and is robust throughout time, between animals, and after drug administration
Summary
Defining the different states of brain activity and describing how they impact the computations performed by neural networks is an ongoing challenge in neuroscience. In our day-to-day lives, the most dramatic change of state is found at the frontier between sleep and wakefulness, which involves substantial modifications at the level of the brain [1,2,3] and throughout the whole organism [4,5]. Despite these profound transformations, to date, we surprisingly lack an measured marker of brain activity that allows unambiguous, moment-to-moment identification of sleep and wake states. This renders all methods inherently vulnerable to any mismatch between these brain states and the level of motor activity such as during freezing—a commonly used behaviour in mice—or any sleep anomalies causing movement during sleep [9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.