Abstract

With the advent of nanotechnology, the treatment of cancer is changing from a conventional to a nanoparticle-based approach. Thus, developing nanoparticles to treat cancer is an area of immense importance. We prepared silver nanoparticles (AgNPs) from methanolic extract of Alpinia galanga rhizome and characterized them by UV-Vis spectrophotometry, Fourier transform Infrared (FTIR) spectroscopy, Zetasizer, and Transmission electron Microscopy (TEM). UV-Vis spectrophotometry absorption spectrum showed surface plasmon between 400 and 480nm. FTIR spectrum analysis implies that various phytochemicals/secondary metabolites are involved in the reduction, caping, and stabilization of AgNPs. The Zetasier result suggests that the particles formed are small in size with a low polydispersity index (PDI), suggesting a narrow range of particle distribution. The TEM image suggests that the particles formed are mostly of spherical morphology with nearly 20-25nm. Further, the selected area electron diffraction (SAED) image showed five electron diffraction rings, suggesting the polycrystalline nature of the particles. The nanoparticles showed high anticancer efficacy against cervical cancer (SiHa) cell lines. The nanostructures showed dose-dependent inhibition with 40% killing observed at 6.25µg/mL dose. The study showed an eco-friendly and cost-effective approach to the synthesis of AgNPs and provided insight into the development of antioxidant and anticancer agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.