Abstract

Nanofluidic ion transport through van der Waals heterostructures, composed of two or more types of reconstructed 2D nanomaterials, gives rise to fascinating opportunities for light-energy harvesting, due to coupling between the optoelectronic properties of the layered constituents and ion transport in between the atomic layers. Here, a photoinduced active ion transport phenomenon through transition metal dichalcogenides (TMDs)-based van-der-Waals-like multilayer heterostructures is reported for harnessing ionic power from equilibrium electrolyte solution. The binary heterostructure comprises sequentially stacked 2D-WS2 and 2D-MoS2 multilayers with sub-1 nm interlayer spacing. Upon visible-light illumination, a net ionic flow is initiated through the Janus membrane, suggesting a directional cationic transport from WS2 to MoS2 part. The transport mechanism is explained in terms of a photovoltaic effect due to type II band alignment of WS2 /MoS2 heterostructures. The driving mechanism can be generally applied to a variety of heterogeneous TMD membranes with type II semiconductor heterojunctions. In equilibrium ionic solutions, the maximum ionic photoresponse approaches ≈21 µAcm-2 and ≈45mV under one sun equivalent excitation. Under optimized conditions, the harvested power density reaches 2mWm-2 . The proof-of-concept demonstration of photonic-to-ionic power generation within angstrom-scale confinement anticipates potential for light-controlled ionic circuits, artificial photosynthesis, and biomimetic energy conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call