Abstract
This study investigates the efficacy of Explainable Artificial Intelligence (XAI) methods, specifically Gradient-weighted Class Activation Mapping (Grad-CAM) and Shapley Additive Explanations (SHAP), in the feature selection process for national demand forecasting. Utilising a multi-headed Convolutional Neural Network (CNN), both XAI methods exhibit capabilities in enhancing forecasting accuracy and model efficiency by identifying and eliminating irrelevant features. Comparative analysis revealed Grad-CAM’s exceptional computational efficiency in high-dimensional applications and SHAP’s superior ability in revealing features that degrade forecast accuracy. However, limitations are found in both methods, with Grad-CAM including features that decrease model stability, and SHAP inaccurately ranking significant features. Future research should focus on refining these XAI methods to overcome these limitations and further probe into other XAI methods’ applicability within the time-series forecasting domain. This study underscores the potential of XAI in improving load forecasting, which can contribute significantly to the development of more interpretative, accurate and efficient forecasting models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.