Abstract
Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and tertiary gene pools represent a rich source of genetic diversity in wheat. The conventional breeding strategies of direct hybridization, backcrossing and selection have successfully introgressed a number of desirable traits associated with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification of wheat varieties. However, it is time consuming to incorporate genes conferring tolerance/resistance to multiple stresses in a single wheat variety by conventional approaches due to limitations in screening methods and the lower probabilities of combining desirable alleles. Efforts on developing innovative breeding strategies, novel tools and utilizing genetic diversity for new genes/alleles are essential to improve productivity, reduce vulnerability to diseases and pests and enhance nutritional quality. New technologies of high-throughput phenotyping, genome sequencing and genomic selection are promising approaches to maximize progeny screening and selection to accelerate the genetic gains in breeding more productive varieties. Use of cisgenic techniques to transfer beneficial alleles and their combinations within related species also offer great promise especially to achieve durable rust resistance.
Highlights
Wheat (Triticum aestivum L.), one of the key cereal crops, is grown on 222 million hectares worldwide and is a major source of calories and proteins globally (USDA, 2016)
We explore the role of new technologies such as genomic selection (GS) and cisgenesis to integrate diverse genes/alleles and accelerate the breeding process
Synthetic hexaploid wheats carry novel variation for tolerance/resistance to abiotic and biotic stresses but are usually poor in agronomic performance. While they are used for transferring useful genetic variation into common wheat, typically one or two backcrosses to elite germplasm followed by selection are required to identify lines with superior performance. Such introgressions can be of benefit to wheat, the donor sources often negatively impact previously selected adaptation traits in the recipient germplasm because alien chromatin is usually incorporated as large blocks that may carry alleles associated with undesirable agronomic characteristics
Summary
Wheat (Triticum aestivum L.), one of the key cereal crops, is grown on 222 million hectares worldwide and is a major source of calories and proteins globally (USDA, 2016). There has been a keen interest in utilizing the genetic diversity of Triticeae species, which includes the primary, secondary, and tertiary gene pools (Aegilops, Agropyron, Elymus, Hordeum, Leymus, Secale, Thinopyrum, and Triticum) These gene pools are a rich source of genes that can be used to improve diverse traits such as disease resistance, micronutrient availability and abiotic stress adaptation. On further study this yield increase from A. elongatum was attributed to a better allocation of assimilates to the reproductive organs (Miralles et al, 2007) Another example is the 6P chromosome from the tetraploid species A. cristatum, which has been reported to increase number of florets, kernels and grain weight in wheat, in addition to improving resistance to the barley yellow-dwarf virus and powdery mildew resistance alleles (Wu et al, 2006; Wang et al, 2011). Other rye chromosomes such as 3R, 4R, and 6R are potential donors; introgressions from these regions could improve aluminum and acid soil tolerance in wheat
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.