Abstract

HypothesisCapillary interactions play an important role in directing colloidal assembly on fluid interfaces. Interface curvature is expected to influence not only individual particle migration on interfaces but also capillary forces between nearby particles. In drying droplets, we hypothesize that the assembly and deposition of particles bound to droplet surface are controlled by the interplay between capillary effects and evaporation-driven flow. ExperimentsUsing lattice Boltzmann–Brownian dynamics (LB–BD) simulations, we modeled large-scale assembly of nanoparticles on fluid interfaces that have complex geometries and investigate the subsequent deposition upon complete evaporation. A systematic study was performed for geometrically-controlled sessile droplets whose surfaces exhibit varying curvature fields. FindingsThe simulations show that the particle dynamics on nonuniformly curved interfaces are anisotropic and governed by particle-pair capillary interactions and curvature-induced capillary migration. A theoretical model was developed to predict the capillarity-induced assembly. Using the curved surface as a template, drying droplets with surface-bound particles deposit distinct patterns as a result of the competition between the capillary effects and evaporation-induced convection. These findings could provide new opportunities in the directed assembly and deposition of colloidal particles with potential applications in fabricating functional materials from nanoscale building blocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.