Abstract
In this paper, we propose a novel mechanism for enriching the feature vector, for the task of sarcasm detection, with cognitive features extracted from eye-movement patterns of human readers. Sarcasm detection has been a challenging research problem, and its importance for NLP applications such as review summarization, dialog systems and sentiment analysis is well recognized. Sarcasm can often be traced to incongruity that becomes apparent as the full sentence unfolds. This presence of incongruity- implicit or explicit- affects the way readers eyes move through the text. We observe the difference in the behaviour of the eye, while reading sarcastic and non sarcastic sentences. Motivated by this observation, we augment traditional linguistic and stylistic features for sarcasm detection with the cognitive features obtained from readers eye movement data. We perform statistical classification using the enhanced feature set so obtained. The augmented cognitive features improve sarcasm detection by 3.7% (in terms of Fscore), over the performance of the best reported system.
Highlights
IntroductionIndirect and complex construct that is often intended to express contempt or ridicule 1
Sarcasm is an intensive, indirect and complex construct that is often intended to express contempt or ridicule 1
We aim to address this problem by exploiting the psycholinguistic side of sarcasm detection, using cognitive features extracted with the help of eye-tracking
Summary
Indirect and complex construct that is often intended to express contempt or ridicule 1. On the other hand, is more restrictive when it comes to such non-linguistic modalities. This makes recognizing textual sarcasm more challenging for both humans and machines. Sarcasm detection plays an indispensable role in applications like online review summarizers, dialog systems, recommendation systems and sentiment analyzers. This makes automatic detection of sarcasm an important problem. It has been quite difficult to solve such a problem with traditional NLP tools and techniques This is apparent from the results reported by the survey from Joshi et al (2016).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.