Abstract
Assessing heterogeneous treatment effects (HTEs) is an essential task in epidemiology. The recent integration of machine learning into causal inference has provided a new, flexible tool for evaluating complex HTEs: causal forest. In a recent paper, Jawadekar etal (Am J Epidemiol. 2023;192(7):1155-1165) introduced this innovative approach and offered practical guidelines for applied users. Building on their work, this commentary provides additional insights and guidance to promote the understanding and application of causal forest in epidemiologic research. We start with conceptual clarifications, differentiating between honesty and cross-fitting, and exploring the interpretation of estimated conditional average treatment effects. We then delve into practical considerations not addressed by Jawadekar etal, including motivations for estimating HTEs, calibration approaches, and ways to leverage causal forest output with examples from simulated data. We conclude by outlining challenges to consider for future advancements and applications of causal forest in epidemiologic research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.