Abstract

Owing to the structural replication of native extracellular matrix, nonwoven mats of electrospun nanofibers have great potential for use in wound healing. Herein, we report the design and fabrication of a sandwich wound dressing to balance its antimicrobial activity and biocompatibility. This success mainly relies on the incorporation of silver nanoparticles (AgNPs) into electrospun nanofibers, together with the rational design of a sandwich structure for the dressing. The bottom layer was composed of hydrophilic nanofibers made from a blend of polycaprolactone (PCL) and gelatin (Gel). The top layer consisted of hydrophobic PCL nanofibers. AgNP-loaded PCL/Gel nanofibers were sandwiched between the two layers. When compared with a commercial silver sulfadiazine dressing, the designed wound dressing showed competitive antimicrobial properties, lower cell toxicity, and accelerated wound closure for mouse skin injury. By balancing the biocompatibility of electrospun nanofibers and the broad-spectrum antibacterial activity of AgNPs within a sandwich structure, the novel multifunctional wound dressing could be valuable for effective wound healing and related applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.