Abstract

Lipopolysaccharide (LPS), also known as endotoxin, triggers a fatal septic shock; therefore, fast and accurate detection of LPS from a complex milieu is of primary importance. Several LPS affinity binders have been reported so far but few of them have proved their efficacy in developing electrochemical sensors capable of selectively detecting LPS from crude biological liquors. In this study, we identified 10 different single-stranded DNA aptamers showing specific affinity to LPS with dissociation constants (Kd) in the nanomolar range using a NECEEM-based non-SELEX method. Based on the sequence and secondary structure analysis of the LPS binding aptamers, an aptamer exhibiting the highest affinity to LPS (i.e., B2) was selected to construct an impedance biosensor on a gold surface. The developed electrochemical aptasensor showed excellent sensitivity and specificity in the linear detection range from 0.01 to 1ng/mL of LPS with significantly reduced detection time compared with the traditional Limulus amoebocyte lysate (LAL) assay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.