Abstract

BackgroundSite-specific C>T DNA base editing has been achieved by recruiting cytidine deaminases to the target C using catalytically impaired Cas proteins; the target C is typically located within 5-nt editing window specified by the guide RNAs. The prototypical cytidine base editor BE3, comprising rat APOBEC1 (rA1) fused to nCas9, can indiscriminately deaminate multiple C’s within the editing window and also create substantial off-target edits on the transcriptome. A powerful countermeasure for the DNA off-target editing is to replace rA1 with APOBEC proteins which selectively edit C’s in the context of specific motifs, as illustrated in eA3A-BE3 which targets TC. However, analogous editors selective for other motifs have not been described. In particular, it has been challenging to target a particular C in C-rich sequences. Here, we sought to confront this challenge and also to overcome the RNA off-target effects seen in BE3.ResultsBy replacing rA1 with an optimized human A3G (oA3G), we developed oA3G-BE3, which selectively targets CC and CCC and is also free of global off-target effects on the transcriptome. Furthermore, we created oA3G-BE4max, an upgraded version of oA3G-BE3 with robust on-target editing. Finally, we showed that oA3G-BE4max has negligible Cas9-independent off-target effects at the genome.ConclusionsoA3G-BE4max can edit C(C)C with high efficiency and selectivity, which complements eA3A-editors to broaden the collective editing scope of motif selective editors, thus filling a void in the base editing tool box.

Highlights

  • Site-specific C>T DNA base editing has been achieved by recruiting cytidine deaminases to the target C using catalytically impaired Cas proteins; the target C is typically located within 5-nt editing window specified by the guide RNAs

  • C>T DNA base editors (CBEs), consisting of APOBEC proteins linked to nCas proteins, complement other forms of base editors (A>G base editors and the recently described prime editor), with great potential for basic research and disease treatment [1, 2]

  • To harness A3G, we replaced the rat APOBEC1 (rA1) in BE3 with human hA3G (Fig. 1a, editors #1 and #3) and assayed its on-target editing in HEK293T cells at a well-defined genomic site carrying CCC within the editing window (HEK293 site 3)

Read more

Summary

Introduction

Site-specific C>T DNA base editing has been achieved by recruiting cytidine deaminases to the target C using catalytically impaired Cas proteins; the target C is typically located within 5-nt editing window specified by the guide RNAs. The prototypical cytidine base editor BE3, comprising rat APOBEC1 (rA1) fused to nCas, can indiscriminately deaminate multiple C’s within the editing window and create substantial off-target edits on the transcriptome. A powerful countermeasure for the DNA off-target editing is to replace rA1 with APOBEC proteins which selectively edit C’s in the context of specific motifs, as illustrated in eA3A-BE3 which targets TC. The human APOBEC family comprises 11 members with diversified functional properties, including A3A which selectively edits TC [6] and A3G, which preferentially deaminates CCC as well as CC [7,8,9,10]. It is highly desirable to develop editor targeting these three motifs

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call