Abstract
T cell receptors (TCR) on cytolytic T lymphocytes (CTLs) recognize "foreign" antigens bound in the groove of major histocompatibility complex (MHC) molecules (H-2 in mouse and HLA in human) displayed on altered cells. These antigens are peptide fragments of proteins derived either from infectious pathogens or cellular transformations during cancer evolution. The conjoint ligand formed by the foreign peptide and MHC, termed pMHC, marks an aberrant cell as a target for CTL-mediated destruction. Recent data have provided compelling evidence that adaptive protection is achieved in a facile manner during immune surveillance when mechanical load consequent to cellular motion is applied to the bond formed between an αβ TCR and its pMHC ligand arrayed on a disease-altered cell. Mechanobiology maximizes both TCR specificity and sensitivity in comparison to receptor ligation in the absence of force. While the field of immunotherapy has made advances to impact the survival of cancer patients, the latest information relevant to T cell targeting and mechanotransduction has yet to be applied for T cell monitoring and treatment of patients in the clinic. Here we review these data, and challenge scientists and physicians to apply critical biophysical parameters of TCR mechanobiology to the medical oncology field, broadening treatment success within and among various cancer types. We assert that TCRs with digital ligand-sensing performance capability directed at sparsely as well as luminously displayed tumor-specific neoantigens and certain tumor-associated antigens can improve effective cancer vaccine development and immunotherapy paradigms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.