Abstract

We consider second-order linear elliptic operators of nondivergence type which are intrinsically defined on Riemannian manifolds. Cabre proved a global Krylov-Safonov Harnack inequality under the assumption that the sectional curvature is nonnegative. We improve Cabre's result and, as a consequence, we give another proof to the Harnack inequality of Yau for positive harmonic functions on Riemannian manifolds with nonnegative Ricci curvature using the nondivergence structure of the Laplace operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.