Abstract

We extend the De Giorgi–Nash–Moser theory to a class of kinetic Fokker-Planck equations and deduce new results on the Landau-Coulomb equation. More precisely, we first study the Holder regularity and establish a Harnack inequality for solutions to a general linear equation of Fokker-Planck type whose coefficients are merely measurable and essentially bounded, i.e. assuming no regularity on the coefficients in order to later derive results for non-linear problems. This general equation has the formal structure of the hypoelliptic equations of type II , sometimes also called ultraparabolic equations of Kolmogorov type, but with rough coefficients: it combines a first-order skew-symmetric operator with a second-order elliptic operator involving derivatives along only part of the coordinates and with rough coefficients. These general results are then applied to the non-negative essentially bounded weak solutions of the Landau equation with inverse-power law γ ∈ [−d, 1] whose mass, energy and entropy density are bounded and mass is bounded away from 0, and we deduce the Holder regularity of these solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call