Abstract

This paper continues the analysis, started in [2, 3], of a class of degenerate elliptic operators defined on manifolds with corners, which arise in Population Biology. Using techniques pioneered by J. Moser, and extended and refined by L. Saloff-Coste, Grigoryan, and Sturm, we show that weak solutions to the parabolic problem defined by a sub-class of these operators, which consists of those that can be defined by Dirichlet forms and have non-vanishing transverse vector field, satisfy a Harnack inequality. This allows us to conclude that the solutions to these equations belong, for positive times, to the natural anisotropic Holder spaces, and also leads to upper and, in some cases, lower bounds for the heat kernels of these operators. These results imply that these operators have a compact resolvent when acting on $C^0$ or $L^2.$ The proof relies upon a scale invariant Poincare inequality that we establish for a large class of weighted Dirichlet forms, as well as estimates to handle certain mildly singular perturbation terms. The weights that we consider are neither Ahlfors regular, nor do they generally belong to the Muckenhaupt class $A_2.$

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call