Abstract
Efficient execution of well-parallelized applications is central to performance in the multicore era. Program analysis tools support the hardware and software sides of this effort by exposing relevant features of multithreaded applications. This paper describes parallel block vectors, which uncover previously unseen characteristics of parallel programs. Parallel block vectors provide block execution profiles per concurrency phase (e.g., the block execution profile of all serial regions of a program). This information provides a direct and fine-grained mapping between an application's runtime parallel phases and the static code that makes up those phases. This paper also demonstrates how to collect parallel block vectors with minimal application perturbation using Harmony. Harmony is an instrumentation pass for the LLVM compiler that introduces just 16-21% overhead on average across eight Parsec benchmarks. We apply parallel block vectors to uncover several novel insights about parallel applications with direct consequences for architectural design. First, that the serial and parallel phases of execution used in Amdahl's Law are often composed of many of the same basic blocks. Second, that program features, such as instruction mix, vary based on the degree of parallelism, with serial phases in particular displaying different instruction mixes from the program as a whole. Third, that dynamic execution frequencies do not necessarily correlate with a block's parallelism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.