Abstract
AbstractHarmony search method is widely applied in structural design optimization since its emergence. These applications have shown that harmony search algorithm is robust, effective and reliable optimization method. Within recent years several enhancements are suggested to improve the performance of the algorithm. Among these Mahdavi has presented two versions of harmony search methods. He named these as improved harmony search method and global best harmony search method. Saka and Hasancebi (2009) have suggested adaptive harmony search where the harmony search parameters are adjusted automatically during design iterations. Coelho has proposed improved harmony search method. He suggested an expression for one of the parameters of standard harmony search method. In this chapter, the optimum design problem of steel space frames is formulated according to the provisions of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Corporation). The weight of the steel frame is taken as the objective function to be minimized. Seven different structural optimization algorithms are developed each of which are based on one of the above mentioned versions of harmony search method. Three real size steel frames are designed using each of these algorithms. The optimum designs obtained by these techniques are compared and performance of each version is evaluated.KeywordsStructural OptimizationMetaheuristic TechniquesHarmony Search Algorithm
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.