Abstract
Motivated by its promising applications, quantum computing is an emerging area of research. This paper addresses the NP-complete problem of finding Nearest Neighbor (NN) realization of quantum circuits on a 2-Dimensional grid. In certain quantum technologies, only physically adjacent qubits are allowed to interact with each other hence the need for NN requirement. Circuits with distant qubits are made NN-compliant by introducing swap gates, hence increasing cost. In this work, we present a Harmony Search (HS) based intelligent metaheuristic algorithm to efficiently realize low cost NN circuits utilizing input line reordering. The distinct feature of the proposed technique is that initial qubits placement is found using HS based metaheuristic followed by an efficient, problem-specific local heuristic to perform swap gate insertion. The effectiveness of the proposed algorithm is demonstrated by comparing its performance to a number of recent published approaches. Solutions found by the proposed technique show reduction in the number of swaps needed in the range of 4% – 36% on average when compared to state-of-the-art techniques. Compared to other approaches, the implemented algorithm is scalable and was able to find optimized circuits within 4 seconds in the worst case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.