Abstract

A probabilistic approach for investigating the phenomena of dissonance and consonance in a simple auditory sensory model, composed by two sensory neurons and one interneuron, is presented. We calculated the interneuron's firing statistics, that is the interspike interval statistics of the spike train at the output of the interneuron, for consonant and dissonant inputs in the presence of additional "noise", representing random signals from other, nearby neurons and from the environment. We find that blurry interspike interval distributions (ISIDs) characterize dissonant accords, while quite regular ISIDs characterize consonant accords. The informational entropy of the non-Markov spike train at the output of the interneuron and its dependence on the frequency ratio of input sinusoidal signals is estimated. We introduce the regularity of spike train and suggested the high or low regularity level of the auditory system's spike trains as an indicator of feeling of harmony during sound perception or disharmony, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.