Abstract

The success of nonviral gene delivery is often restricted by the multiple cellular barriers that posed inconsistent requirements for vector design. High molecular weight (MW) and cationic charge density are required for polycations to enable effective gene encapsulation, which, however, also lead to high toxicity, restricted intracellular cargo release, and poor serum resistance. We herein developed cross-linked polyethylenimine (PEI) with built-in UV-responsive domains (NP-PEI), which can effectively condense DNA while rapidly de-cross-link upon light triggers to promote intracellular DNA release and reduce material toxicity. HA coating of the polyplexes further enhanced their serum stability by shielding the surface positive charges and enabled cancer cell targeting to potentiate the transfection efficiencies. Thus, the polyplexes afforded high transfection efficiencies in serum upon light irradiation, outperforming PEI 25k by 1-2 orders of magnitude. This study therefore provides a useful strategy to overcome the critical barriers against nonviral gene delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.