Abstract

Enhancing the sensitivity of capacitive pressure sensors through microstructure design may compromise the reliability of the device and rely on intricate manufacturing processes. It is an effective way to solve this issue by balancing the intrinsic properties (elastic modulus and dielectric constant) of the dielectric layer materials. Here, we introduce a liquid metal (LM) hybrid elastomer prepared by a chain-extension-free polyurethane (PU) and LM. The synergistic strategies of extender-free and LM doping effectively reduce the elastic modulus (7.6 ± 0.2-2.1 ± 0.3 MPa) and enhance the dielectric constant (5.12-8.17 @1 kHz) of LM hybrid elastomers. Interestingly, the LM hybrid elastomer combines reprocessability, recyclability, and photothermal conversion. The obtained flexible pressure sensor can be used for detecting hand and throat muscle movements, and high-precision speech recognition of seven words has been using a convolutional neural network (CNN) in deep learning. This work provides an idea for designing and manufacturing wearable, recyclable, and intelligent control pressure sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.