Abstract

Fragmentation methods offer an attractive alternative for ab initio treatment of large molecules and molecular clusters. However, balancing the accuracy and efficiency of these methods is a tight-rope-act. With this in view, we present an algorithm for automatic molecular fragmentation within Molecular Tailoring Approach (MTA) achieving this delicate balance. The automated code is tested out on a variety of molecules and clusters at the Hartree-Fock (HF)- and Møller-Plesset second order perturbation theory as well as density functional theory employing augmented Dunning basis sets. The results show remarkable accuracy and efficiency vis-à-vis the respective full calculations. Thus the present work forms an important step toward the development of an MTA-based black box code for implementation of HF as well as correlated quantum chemical calculations on large molecular systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.