Abstract

BackgroundCycle threshold (Ct) values from SARS-CoV-2 reverse transcription quantitative PCR (RT-qPCR) tests are used to measure viral burden. Calibration to the First WHO International Standard for SARS-CoV-2 RNA may improve quantitative inter-assay agreement.MethodsWHO standard was tested using four emergency use authorized RT-qPCRs to generate calibration curves and evaluate Ct value differences. Harmonization of two assays, Cepheid Xpert Xpress SARS-CoV-2 targeting E and nucleocapsid (N2) [Xpert (E) and Xpert (N2)] and a laboratory-developed test targeting E [LDT (E)], was assessed using 93 positive upper respiratory samples. Platform (target) pairs were compared via Bland-Altman analysis and Passing-Bablok regression.ResultsCt values with the WHO standard were comparable across platforms and targets, except Xpert (N2) for which the mean difference was a median of 3.68 cycles (Interquartile Range, IQR = 3.23 to 3.76 cycles) greater than other platform (target) pairs. Using clinical samples, the mean difference of Xpert (N2) to LDT (E) was 3.64 cycles (95% Confidence Interval, CI =1.51 to 5.76). After calibration, the mean difference of Xpert (N2) to LDT (E) was 0.08 log10 IU/mL (95% CI = -0.56 to 0.71) and the regression was y = 1.00x * 0.08 (95% CI slope = 0.93 to 1.07, 95% CI intercept = 0.28 to 0.42).ConclusionsCalibration to the WHO standard resulted in the harmonization of two RT-qPCR tests, whereas analysis by Ct value alone may have led to erroneous quantitation. Harmonization to the WHO standard has the potential to improve the generalizability of clinical associations with SARS-CoV-2 RNA levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call