Abstract
Dermal exposure assessment and modeling is still in early phases of development. This article presents the results of a workshop organized to harmonize the future needs in this field. Methods for dermal exposure assessment either assess the mass of contaminant that is transferred to the skin, or the transfer of contaminant through the skin. Models for dermal exposure are either knowledge-based or deterministic. Any method or model should be transparent, validated, and open to further development. Some (partly) validated and standardized methods are available for measuring or modeling permeation of the skin or of personal protective equipment (PPE). Further validation and standardization is necessary. More research is needed on permeation of dusts and aerosols and more realistic tests should be developed and used for PPE. Several methods have been developed to measure contamination of surfaces or skin, but they are not validated or standardized. A number of non-validated models exist to assess dermal exposure. A clear need exists for more studies of dermal exposure, regarding measurement methods, models and actual exposure levels. A running four-year European study will greatly expand the knowledge in this field. Simple tools to assess and control the risks of dermal exposure in small and medium sized enterprises are also needed. Increasing the general knowledge of practitioners (e.g., safety professionals, occupational hygienists and physicians) in the field of dermal exposure is a first requirement. Available data, for example, on the permeation of PPE, should be made more readily available, using modern information technology. When information on dermal exposure is gathered and stored, the core information needs are partly the same as those for inhalation exposure. Some elements of process and activity, substance and product or worker, specific for dermal exposure, have been suggested by the workshop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.