Abstract

Four identical spinless bosons with purely attractive two-body short-range interactions and repulsive three-body interactions under external spherically symmetric harmonic confinement are considered. The repulsive three-body potential prevents the formation of deeply-bound states with molecular character. The low-energy spectrum with vanishing orbital angular momentum and positive parity for infinitely large two-body $s$-wave scattering length is analyzed in detail. Using the three-body contact, states are classified as universal, quasi-universal, or strongly non-universal. Connections with the zero-range interaction model are discussed. The energy spectrum is mapped out as a function of the two-body $s$-wave scattering length $a_s$, $a_s>0$. In the weakly- to medium-strongly-interacting regime, one of the states approaches the energy obtained for a hard core interaction model. This state is identified as the energetically lowest-lying "BEC state". Structural properties are also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call