Abstract

Consider a cylinder made of a microstretch thermoelastic material for which one plane end is subjected to plane boundary data varying harmonically in time. On the lateral surface and other base, we have zero body force and heat supply. By using a Toupin type measure associated with the corresponding steady-state vibration, and by assuming that the angular frequency of oscillations is lower than a certain critical frequency, we show that the amplitude of the vibrations decays exponentially with the distance to the base. This decay estimate is similar to that of the Saint-Venant type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.