Abstract

We compute the full harmonic vibrational spectrum and eigenmodes of a DNA oligomer, d(C-G)3, in optimized B and Z conformations in various ionic environments (0.01-5.0 M NaCl). The statistical interactions of DNA with the diffuse ionic cloud surrounding it in solution are approximately represented within the potential of mean force framework. The lowest eigenfrequency of the B conformation is found to drastically decrease with increased NaCl concentration. This suggests that a soft mode mechanism may be a precursor for the B-to-Z conversion. The free energy balance governing the B-Z isomerization of d(C-G)3 is dominated by the solvent-averaged effective phosphate-phosphate interactions due to substantial cancelations between the much larger intramolecular energy contributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.