Abstract

We prove that L 2 harmonic two-forms are parallel if a complete manifold (M, g) has the non-negative isotropic curvature. Furthermore, if (M, g) has positive isotropic curvature at some point, then there is no non-trivial L 2 harmonic two-form. We obtain that an almost Kahler manifold of non-negative isotropic curvature is Kahler and a symplectic manifold can not admit any almost Kahler structure of positive isotropic curvature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.