Abstract

A rate theory for thermally activated transitions in spin systems is presented. It is based on a transition-state approximation derived from Landau-Lifshitz equations of motion and quadratic expansion of the energy surface at minima and first order saddle points. While the flux out of the initial state vanishes at first order saddle points, the integrated flux over the hyperplanar transition state is nonzero and gives a rate estimate in good agreement with direct dynamical simulations of test systems over a range in damping constant. The preexponential factor obtained for transitions in model systems representing nanoclusters with 3 to 139 transition metal adatoms is on the order of ${10}^{11}$ to ${10}^{13}\phantom{\rule{0.28em}{0ex}}{\mathrm{s}}^{\ensuremath{-}1}$, similar to that of atomic rearrangements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.