Abstract

This article shows that every non-isotropic harmonic 2-torus in complex projective space factors through a generalised Jacobi variety related to the spectral curve. Each map is composed of a homomorphism into the variety and a rational map off it. The same ideas allow one to construct (pluri)-harmonic maps of finite type from Euclidean space into Grassmannians and the projective unitary groups. Further, some of these maps will be purely algebraic. For maps into complex projective space the algebraic maps of the plane are always doubly periodic i.e. they yield 2-tori. The classification of all these algebraic maps remains open.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.